| 1. | On eigenvectors of matrices over distributive lattices 分配格上矩阵的特征向量 |
| 2. | A note on generalized completely distributive lattices 关于广义完全分配格的一个注记 |
| 3. | The representation of generalized compeletly distributive lattices 完全分配格的关系表示 |
| 4. | Characterization of completely distributive lattices 完全分配格的刻划 |
| 5. | Principal congruences on pseudo - complemented distributive lattices 伪补分配格上的主同余关系 |
| 6. | Congruence ideals and congruence relations of pseudocomplemented distributive lattice 伪补分配格的同余理想与同余关系 |
| 7. | Results some equivalent statements are obtained concerning a semiring becoming a distributive lattice 结果给出了该类半环成为分配格的几个等价命题。 |
| 8. | Aim in order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice 摘要目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。 |
| 9. | Main results are following : theorem 1 . 9 let 5 is a - pseudo - strong distributive lattice semiring , 0 is a congruence of the definition in lemma 1 . 4 所得的主要结果如下:定理1 9设为伪强分配格半环,为引理1 4中所定义的s上的同余。 |
| 10. | In this paper , we shall give the structure of solutions of eigen equation of a matrix over a distributive lattice and characterize convergence of powers of a matrix over a distributive lattice in terms of the eigen sets 给出分配格上矩阵的本征方程的解的结构,利用本征方程的解集给出了矩阵幂收敛的一个等价刻划 |